On Nonparametric Image Registration
نویسندگان
چکیده
Image registration aims to map one image to another of a same scene. It is a fundamental task in many imaging applications. Most existing image registration methods assume that the mapping transformation has a parametric form or satisfies certain regularity conditions (e.g., it is a smooth function with continuous first or higher order derivatives). They often estimate the mapping transformation globally by solving a global minimization/maximization problem. Such global smoothing methods usually cannot preserve singularities (e.g., discontinuities) and other features of the mapping transformation well. Further, the ill-posed nature of the image registration problem, namely, the mapping transformation is not well defined at certain places, including the place where the true image intensity surface is straight, is not handled properly by such methods. In this paper, we suggest solving the image registration problem locally, by first studying the local properties of a mapping transformation. To this end, some concepts for describing such local properties are suggested, and a local smoothing method for estimating the mapping transformation is proposed. Because of the flexibility of local smoothing, our method does not require any parametric form or other global regularity conditions on the mapping transformation. Both theoretical and numerical studies show that it is effective in various applications. Supplementary materials are available online.
منابع مشابه
A Study on Robustness of Various Deformable Image Registration Algorithms on Image Reconstruction Using 4DCT Thoracic Images
Background: Medical image interpolation is recently introduced as a helpful tool to obtain further information via initial available images taken by tomography systems. To do this, deformable image registration algorithms are mainly utilized to perform image interpolation using tomography images.Materials and Methods: In this work, 4DCT thoracic images of five real patients provided by DI...
متن کاملA Novel Subsampling Method for 3D Multimodality Medical Image Registration Based on Mutual Information
Mutual information (MI) is a widely used similarity metric for multimodality image registration. However, it involves an extremely high computational time especially when it is applied to volume images. Moreover, its robustness is affected by existence of local maxima. The multi-resolution pyramid approaches have been proposed to speed up the registration process and increase the accuracy of th...
متن کاملNonparametric Mixture Models for Supervised Image Parcellation.
We present a nonparametric, probabilistic mixture model for the supervised parcellation of images. The proposed model yields segmentation algorithms conceptually similar to the recently developed label fusion methods, which register a new image with each training image separately. Segmentation is achieved via the fusion of transferred manual labels. We show that in our framework various setting...
متن کاملبهبود سرعت "انطباق مبتنی بر روش برش گراف" جهت انطباق غیر صلب تصاویر تشدید مغناطیسی مغز
Image processing methods, which can visualize objects inside the human body, are of special interests. In clinical diagnosis using medical images, integration of useful data from separate images is often desired. The images have to be geometrically aligned for better observation. The procedure of mapping points from the reference image to corresponding points in the floating image is called Ima...
متن کاملEvaluation of deformable image registration in HDR gynecological brachytherapy
Introduction: In brachytherapy, as in external radiotherapy, image-guidance plays an important role. For GYN treatments it is standard to acquire at least CT images and preferably MR images prior to each treatment and to calculate the dose of the day on each set of images. Then, the dose to the target and to the organs at risk (OAR) is calculated with worst case scenario from I...
متن کاملContourlet-Based Edge Extraction for Image Registration
Image registration is a crucial step in most image processing tasks for which the final result is achieved from a combination of various resources. In general, the majority of registration methods consist of the following four steps: feature extraction, feature matching, transform modeling, and finally image resampling. As the accuracy of a registration process is highly dependent to the fe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Technometrics
دوره 55 شماره
صفحات -
تاریخ انتشار 2013